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c© Società Italiana di Fisica
Springer-Verlag 2000

Effective potential of the O(N) linear sigma-model at finite
temperature

Y. Nemoto1,2,a, K. Naito1,3, and M. Oka1

1 Department of Physics, Tokyo Institute of Technology Meguro, Tokyo 152-8551 Japan
2 Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 Japanb

3 Radiation Laboratory, the Institute of Physical and Chemical Research (RIKEN) Wako, Saitama 351-0198 Japanc

Received: 21 June 2000
Communicated by W. Weise

Abstract. We study the O(N) symmetric linear sigma-model at finite temperature as the low-energy
effective models of quantum chromodynamics (QCD) using the Cornwall-Jackiw-Tomboulis (CJT) effective
action for composite operators. It has so far been claimed that the Nambu-Goldstone theorem is not satisfied
at finite temperature in this framework unless the large-N limit in the O(N) symmetry is taken. We show
that this is not the case. The pion is always massless below the critical temperature, if one determines the
propagator within the form such that the symmetry of the system is conserved, and defines the pion mass
as the curvature of the effective potential. We use a regularization for the CJT effective potential in the
Hartree approximation, which is analogous to the renormalization of auxiliary fields. A numerical study
of the Schwinger-Dyson equation and the gap equation is carried out including the thermal and quantum
loops. We point out a problem in the derivation of the sigma meson mass without quantum correction at
finite temperature. A problem about the order of the phase transition in this approach is also discussed.

PACS. 11.30.Rd Chiral symmetries – 11.10.Wx Finite-temperature field theory – 12.39.Fe Chiral La-
grangians

1 Introduction

Chiral symmetry is one of the most important features of
low-lying hadron properties. In quantum chromodynamics
(QCD) this symmetry is well satisfied in the SU(2) sector
due to the light u, d quark masses. Existence of the nearly
massless mesons, or pions, means that the chiral symmetry
must be spontaneously broken and the Nambu-Goldstone
(NG) bosons appear. Spontaneous chiral symmetry break-
ing (SCSB) is also manifested in the non-degenerate par-
ity doublet of nucleons. So SCSB influences the low-lying
hadron spectra significantly. Though such low-energy phe-
nomena of the strong interaction as well as the quark con-
finement are now widely confirmed in experiments, no an-
alytic investigation based on the first principle, or QCD
is carried out due to its non-perturbative nature. So it is
still important to study the effective models of QCD in
order to understand the nature of hadrons in addition to
numerical analyses in the lattice gauge theory.

In increasing temperature, as shown in the lattice QCD
calculation, the chiral symmetry is believed to be restored
at around T = 100–300 MeV. The study of physics at
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finite temperature is very interesting from both theoreti-
cal and experimental points of view. The big bang model
tells us that a series of phase transitions, which of course
include the QCD phase transition, occurred in the early
universe. It could also be possible to probe the underlying
physics of QCD in laboratory involving relativistic heavy-
ion collisions. These experiments are planned in near fu-
ture and its result is expected to elucidate some impor-
tant questions like the mechanism of the chiral symmetry
restoration and the nature of quark gluon plasma.

Theoretical investigation of the symmetry restoration
at finite temperature in terms of field theory was first
studied by Kirzhnits and Linde [1]. They observed that
spontaneous symmetry breaking (SSB) will be restored
at sufficiently high temperatures. It is now well known
that the naive effective potential up to the 1-loop level
does not work at finite temperature. Weinberg pointed out
that at very high temperature, powers of temperature T
can compensate for powers of a small coupling constant e,
leading to a breakdown of the perturbation expansion [2].
He showed that the leading effect of this sort arises from
the e2T 2 term in the scalar φ4 theory. Dolan and Jackiw
and others showed that systematic summation of a certain
kind of loop diagrams in this model is needed at finite
temperature [3,4].
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For analysis of the linear sigma-model at finite tem-
perature, the mean-field approximation has mainly been
used so far. The mean-field theory is a theory in which the
resummation of the diagrams is introduced approximately
by hand and has been used by many authors [5–7].

Recently several analyses at finite temperature have
been done using an extended effective potential for com-
posite operators introduced by Cornwall, Jackiw, and
Tomboulis (CJT) [8]. Contrary to the usual effective ac-
tion, their effective action depends not only the classical
field φc(x) but also on G(x, y). These two quantities are
to be realized as the expectation values of a quantum field
φ(x) and the time ordered product of the field operator
Tφ(x)φ(y), respectively. In this case the effective action
Γ (φc, G) is the generating functional of the two-particle
irreducible vacuum graphs. This formalism was originally
written at zero temperature but it has been extended for
finite temperature in φ4 theory by Amelino-Camelia and
Pi [9].

There is an advantage in using the CJT formalism to
calculate the effective potential in the Hartree approxima-
tion. According to ref. [9], we need to evaluate only one
graph that of the “double bubble” instead of summing
infinite many “daisy” and “superdaisy” graphs using the
usual tree level propagators. These infinite diagrams are
incorporated automatically in the effective action if the
CJT formalism is used, so the effective potential takes
real values at finite temperature. The need of the resum-
mation of this kind of loop diagrams at finite temperature
is also discussed in other approaches [10].

Amelino-Camelia et.al. investigated the O(N) linear
sigma-model, which is regarded as the low-energy effec-
tive model of the sigma-meson and the pions, at finite
temperature with the CJT action [12,13]. It is known,
however, that in their approach one encounters a diffi-
culty that the NG theorem appears to be violated in the
broken symmetry phase at finite temperature. They con-
cluded that in the CJT formalism the NG theorem is vi-
olated in the Hartree(-Fock) approximation, i.e., the case
of finite values of N and the so-called superdaisy approxi-
mation, while it is satisfied if and only if leading contribu-
tions in the 1/N expansion are taken. They also discussed
the renormalization in the CJT formalism and suggested
that a consistent renormalization cannot be performed in
the broken phase, since the non-perturbative quantities,
or solutions of the Schwinger-Dyson(SD) equations, are
included.

In this paper we study two subjects. One is the for-
mulation of the linear sigma-model at finite temperature.
We re-analyze the O(N) linear sigma-model at finite tem-
perature in the CJT formalism and show that the NG
theorem is always satisfied at any finite values of N in the
Hartree approximation. The CJT action does not violate
the O(N) symmetry, so that the pions are always mass-
less below the critical temperature if we define the meson
masses by the curvature, or the second derivative of the
effective potential. On the renormalization, we adopt the
method of the renormalization of auxiliary fields, which is
regarded as a kind of the regularization in the CJT for-

malism. As shown in the CJT’s paper, the solutions of the
SD-equation can be thought as a kind of auxiliary field in
the mean-field level. This approach has a clear advantage
that both the broken and restored phases can be appro-
priately regularized in a unified way.

The other is the application of the above formalism to
low-energy hadron properties. The linear sigma-model has
various merits as an effective model of low-energy hadron
dynamics. It can describe SSB as in QCD. Furthermore
one can study both the symmetry broken phase and the
restored phase if desired. Other effective models such as
non-linear sigma-model or chiral perturbation theory treat
basically the world with SSB.

The contents of this paper are as follows. In sect. 2,
we introduce the CJT effective action for composite oper-
ators and explain the difference from the ordinary effec-
tive action. In sect. 3, we construct an effective potential
for the O(N) symmetric linear sigma-model. Here we also
point out inconvenience of the conventional formulation.
We show that the NG theorem holds even at finite temper-
ature if one adopts the O(N) symmetric form of the prop-
agator and defines the meson masses as the curvatures of
the effective potential. We discuss a regularization of the
CJT effective potential in sect. 4. It is based on the renor-
malization of auxiliary fields and was long ago applied to
this model in the large-N limit [14,15]. It can remove di-
vergences in the effective potential both in the symmetry
broken and restored phases, while the conventional renor-
malization can be performed only in the restored phase.
Using them, we apply the linear sigma-model to the low-
energy mesons in sect. 5. As is well known, the O(4) linear
sigma-model can describe the physics of the sigma-meson
and the pions in low-energy region. We discuss tempera-
ture dependence of physical masses of these mesons and
sigma condensate corresponding to the pion decay con-
stant. In the last subsection we also comment on the order
of the phase transition and the validity of the approxima-
tion used here. Finally summary and conclusion are given
in sect. 7.

2 Effective action for composite operators

Effective action for composite operators was originally
studied in condensed matter physics [16] and then ex-
tended to relativistic field theories [17]. We here use an ap-
proach introduced by Cornwall, Jackiw and Tomboulis [8].
This is based on functional methods or the path integral
representation for the Green functions.

The effective action for composite operators is a gen-
eralization of the conventional effective action and is writ-
ten by Γ [φc, G]. This is a functional both of the expecta-
tions value of the quantum field φc(x) = 〈0|φ(x)|0〉 and of
the propagator G(x, y) = 〈0|Tφ(x)φ(y)|0〉. The c-number
function φc(x) is also called a classical field. The varia-
tional equations

δΓ [φc, G]
δφc(x)

= 0 , (1)
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δΓ [φc, G]
δG(x, y)

= 0 , (2)

determine φc and G in the vacuum. Equation (2) is noth-
ing but the SD-equation for the propagator G. Further-
more, we can show that the second variational deriva-
tive of Γ [φc, G] in G leads to the Bethe-Salpeter equation
which describes relativistic bound states. For example, in
hadron physics, this is used in order to describe meson
states as the bound state of the quark-antiquark pair.

We now describe the series expansion for Γ [φ,G]. We
introduce the so-called tree level 2-point Green function
by

iD−1(φc, x, y) =
δ2S[φc]

δφc(x)δφc(y)

= iD−1(x− y) +
δ2S[φc]int

δφc(x)δφc(y)
. (3)

The required series is then

Γ [φc, G] = S[φc] +
i

2
TrLnG−1

+
i

2
TrD−1(φc)G+ Γ2[φc, G] + const , (4)

where the trace, the logarithm and the product D−1G are
taken in the functional sense. The conventional effective
action Γ [φc] is Γ [φc, G] by removing G with the condi-
tionx (2), i.e.,

Γ [φc] = Γ [φc, G0] , (5)

δΓ [φc, G0]
δG0(x, y)

= 0 . (6)

The constant which is independent of φ and G is evaluated
so that eqs. (5) and (6) are satisfied:

Γ [φc, G] = S[φc] +
i

2
TrLnDG−1

+
i

2
Tr(D−1(φc)G− 1) + Γ2[φc, G] (7)

This expression is used in some literature. Γ2[φc, G] is
given by all the two-particle and higher two-particle irre-
ducible vacuum graphs in a theory which has the vertices
determined by the interaction of the action Sint[φ, φc] and
the propagators G(x, y).

When one considers the case of translation-invariant
solutions, one sets φc(x) to a constant φc and takes G(x, y)
to be a function only of x− y. The series for the effective
potential V (φc, G) can be easily obtained from eq. (4):

V (φc, G) = V0(φc)− i

2

∫
d4k

(2π)4
lnG−1(k)

− i
2

∫
d4k

(2π)4
trD−1(φc, k)G(k) + V2(φc, G) (8)

where V0(φc) is the tree-level (classical) effective potential,

G(k) =
∫

d4xeik·(x−y)G(x− y) , (9)

D(φc, k) =
∫

d4xeik·(x−y)D(φc, x− y) , (10)

and −V2(φc, G) is the sum of all two- and higher-order
loops two-particle irreducible vacuum graphs of the theory
with vertices given by Sint(φc) and propagator G(k). The
stationary requirements are then

∂V (φc, G)
∂φc

= 0 , (11)

∂V (φc, G)
∂G(k)

= 0 . (12)

These equations are the starting point of our discussion.

3 Formulation of the O(N) linear
sigma-model

3.1 Effective potential at finite temperature

In this section we construct the effective potential of the
O(N) symmetric linear sigma-model using the CJT for-
malism. In QCD with two-flavor massless quarks, the chi-
ral SU(2)L × SU(2)R symmetry is satisfied in the La-
grangian level. But this symmetry is spontaneously bro-
ken to the SU(2)V symmetry, because the vacuum, i.e.,
the ground state of the field configuration violates it.
We can see this phenomenon in the O(4) linear sigma-
model, because the O(4) symmetry has the same algebra
as SU(2) × SU(2). Four fields in the O(4) linear sigma-
model are identified with one sigma-meson and three pi-
ons when we regard it as an effective model of hadrons. By
spontaneous symmetry breaking from O(4) to O(3), the
three fields become massless according to the NG theorem
and the remaining one is massive. Here we concentrate on
the meson fields and see how this model is formulated with
the CJT effective action. We set the arbitrary N instead
of N = 4 at the stage of the formulation for generality. We
use the Euclidean metric hereafter because it is convenient
when we extend the model to that with the imaginary time
formalism at finite temperature.

The Lagrangian density for the O(N) linear sigma-
model is given by

L =
1
2
∂µφ

a∂µφ
a +

1
2
m2φ2 +

λ

6N
(φ2)2 , (13)

where φ2 = φaφa, a runs over 1 to N and repeated indices
are summed. By shifting the field as φa(x) = φa(x) +
φa

c (x), The tree-level 2-point Green function D is obtained:

D−1
ab (φc, x, y) =

δ2S

δφaδφb

∣∣∣∣
φ=φc

=
[
−∂µ∂µ +m2 +

2λ
3N
φ2

c

]

× δabδ4(x− y) +
4λ
3N
φa

cφ
b
cδ

4(x− y) . (14)
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Fig. 1. Two-particle irreducible diagrams contributing to
Γ2[φc, G] up to the three-loop level.

In momentum space, it is given by

D−1
ab (φc, k) =

[
k2 +m2 +

2λ
3N
φ2

c

]
δab +

4λ
3N
φa

cφ
b
c (15)

and the inverse becomes

Dab(φc, k) =
1

k2 +m2 + 2λ
N φ

2
c

φa
cφ

b
c

φ2
c

+
1

k2 +m2 + 2λ
3N φ

2
c

(
δab − φa

cφ
b
c

φ2
c

)
. (16)

The interaction Lagrangian which describes the vertices
of the shifted theory is given by

Lint(φc, φ) =
2λ
3N
φ2φa

cφ
a +

λ

6N
(φ2)2 . (17)

The diagrams contributing to Γ2[φc, G] are shown in fig. 1.
Each line represents the propagator Gab(x, y), and there
are two kinds of vertices: a four-point vertex proportional
to λ and a three-point vertex, which results from shifting
the fields, proportional to λφa

c (x).
If we were computing the ordinary effective ac-

tion Γ [φc], the lines would represent the propagator
Dab(φc, x, y) and there would be additional contribu-
tions which are two-particle reducible. These diagrams are
shown in fig. 2.

Let us compute the CJT effective action (4). We eval-
uate Γ [φc, G] in the Hartree approximation, i.e., we take
into account the “∞” type diagram only. This diagram
is a leading order in Γ2[φc, G] in both the loop expansion
and the 1/N expansion. The other two-loop diagram, the
setting-sun type diagram, which is the next to leading or-
der in the 1/N expansion, is quite lengthy to calculate.

In this approximation, Γ2 is given by

Γ2(φc, G) =
λ

6N

∫
d4x(Gaa(x, x)Gbb(x, x)

+2Gab(x, x)Gba(x, x)) . (18)

Then the CJT action has the form

Γ [φc, G] = S[φc] +
1
2
TrLnG−1 +

1
2
Tr(D−1(φc)G)

+
λ

6N

∫
d4x(Gaa(x,x)Gbb(x,x)+2Gab(x,x)Gba(x,x)), (19)

Fig. 2. Two-particle reducible diagrams which do not con-
tribute to Γ2[φc, G] up to the three-loop level.

where S[φc] is the classical action

S[φc] =
∫

d4x

(
1
2
∂µφ

a
c∂µφ

a
c +

1
2
m2φ2

c +
λ

6N
(φ2

c)
2

)
. (20)

From this, the effective potential for the composite oper-
ators is given by

V (φc, G) = V0[φc] +
1
2

∫
d4k

(2π)4
ln detG−1(k)

+
1
2

∫
d4k

(2π)4
tr(D−1(φc, k)G(k))

+
λ

6N

[{∫
d4k

(2π)4
Gaa(k)

}2

+2
{∫

d4k

(2π)4
Gab(k)

} {∫
d4k

(2π)4
Gba(k)

}]
(21)

with

V0[φc] =
1
2
m2φ2

c +
λ

6N
(φ2

c)
2 , (22)

where the trace and determinant are taken only in the
internal (flavor) space.

If one applies this model to a system at finite temper-
ature, one replaces the loop integral with∫

d4k

(2π)4
−→ T

∞∑
n=−∞

∫
d3k

(2π)3
≡ ∑∫

T,k

(23)

in the imaginary time formalism. The sum is taken over
the Matsubara frequency. So the starting effective poten-
tial we study is

V (φc, G) = V0[φc] +
1
2
∑∫

T,k

ln detG−1(k)

+
1
2
∑∫

T,k

(D−1(φc, k)G(k)) +
λ

6N

[{∑∫
T,k

Gaa(k)
}2

+2
{∑∫

T,k

Gab(k)
} {∑∫

T,k

Gba(k)
}]

. (24)

Minimizing the effective potential with respect to the
propagator G(φc, k), we obtain the SD-equation

G−1
ab (p) = D−1

ab (φc, p)

+
2λ
3N

[∑∫
T,k

Gcc(k)δab + 2
∑∫

T,k

Gab(k)
]
. (25)

The solution G0(φc, k) of this equation is inserted back
into the expression for the effective potential to give the
conventional effective potential as a function of φc.
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3.2 How to take the form of the propagator G

We need to determine the form of the SD-equation, G.
In case of the O(N) linear sigma-model, it seems to be
natural to adopt the following multi-component form:

G(k)ab(φc, k) = δa1δb1
1

k2 +M2
σ

+
N∑

j=2

δajδbj 1
k2 +M2

π

.(26)

In fact several authors adopt this form [12,13] and in
ref. [13] this is called dressed propagator ansatz. They also
identify the parametersMσ andMπ with the masses of the
sigma-meson and pions, respectively. It is, however, obvi-
ous that this form of G does violate the O(N) symmetry.
So the effective potential after substituting the solutionG0

also violates the O(N) symmetry. As dicussed below, how-
ever, one can derive the correct answer in this approach if
one examines the transformation property of Mσ and Mπ

carefully in order to restore the O(N) symmetry. We cal-
culate the meson masses by using the definitions (38) and
(39) from the effective potential directly. In this case it is
convenient and transparent to choose the form of G not
to break the symmetry. Here we use the following form of
G from the analogy of D:

G−1
ab (φc, k) = (k2 + α(φ2

c))δ
ab + β(φ2

c)
φa

cφ
b
c

φ2
c

(27)

where α(φ2
c) and β(φ2

c) are unknown functions which are
determined by solving the SD-equation. We assume that α
and β are independent of the external momentum and also
that no more parameters are needed because the Hartree
approximation is employed.

Substituting eq. (27) into the CJT effective poten-
tial (8), we obtain

V (φc, G(φc, k))

=
m2

2
φ2

c +
λ

6N
(φ2

c)
2 +

1
2
Q[α+ β] +

N − 1
2

Q[α]

+
1
2

(
m2 +

2λ
N
φ2

c − (α+ β)
)
P [α+ β]

+
N − 1

2

(
m2 +

2λ
3N
φ2

c − α
)
P [α] +

λ

6N
[
3P [α+ β]2

+(N2 − 1)P [α]2 + 2(N − 1)P [α+ β]P [α]
]
, (28)

where we introduce

P [x] =
∑∫

T,k

1
k2 + x

, (29)

Q[x] =
∑∫

T,k

ln(k2 + x) , (30)

for simplicity. This effective potential depends only on
φ2

c ≡ φa
cφ

a
c and therefore is O(N) symmetric obviously.

The functions α and β are determined from the follow-
ing SD-equations:

α+ β = m2 +
2λ
N
φ2

c +
2λ
N

×P [α+ β] +
2λ
3
N − 1
N

P [α] , (31)

α = m2 +
2λ
3N
φ2

c +
2λ
3N

×P [α+ β] +
2λ
3
N + 1
N

P [α] . (32)

On the other hand, when we identify the components of
Gab with the propagators of the sigma and pions, i.e.,
G11 = Gσ, G22 = G33 = · · · = GNN = Gπ, we obtain

G−1
σ (k) = k2 +m2 +

2λ
N
σ2

c +
2λ
3
N − 1
N

π2
c

+
2λ
3N

∫
d4k

(2π)4
(3Gσ(k) + (N − 1)Gπ(k)) , (33)

G−1
π (k) = k2 +m2 +

2λ
3N
σ2

c +
2λ
3
N + 1
N

π2
c

+
2λ
3N

∫
d4k

(2π)4
(Gσ(k) + (N + 1)Gπ(k)) , (34)

with σc = φ1
c , πc = φ2

c = φ3
c = · · · = φN

c . Equation (34)
is clearly not the O(N) covariant form. After the conden-
sation, σc = σ0 �= 0, πc = 0, these eqs. (33) and (34) are
identical to eqs. (31) and (32), respectively, by identifying
G−1

σ (k) with k2+α+β and G−1
π (k) with k2+α. Therefore

when we derive the SD-equations for α and β, which cor-
respond to Mσ and Mπ in the dressed propagator ansatz,
both approaches lead to the same equations.

The dressed propagator ansatz means that the O(N)
symmetry is violated by putting σc = σ0 �= 0, πc = 0 from
the begining. But it is known that when one replaces σ2

0 by
φ2

c after all calculation, the resultant equations restore the
O(N) symmetry. This is one of simple calculation meth-
ods.

The reason why we adopt the O(N) symmetric two-
point function (27) is as follows. As be seen later, we
get the physical meson masses as the second derivative
of the effective potential. In the way of the calculation,
we need to obtain the first derivative of the effective po-
tential before the condensation, i.e., the O(N) symmetric
form. Even if one employed the dressed propagator ansatz
and replaced σ2

0 by φ2
c after calculation, one might lead

to the right equations by a careful examination. In this
case, however, Mσ and Mπ also look like the O(N) vio-
lated form and it is not clear how to “restore” them into
the symmetric form. So it is straightforward to employ the
O(N) symmetric form (27).
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The gap equation for the sigma condensate is given by

dV (φc, G(φc))
dσc

∣∣∣∣
σc=σ0,πc=0

=

(
∂V (φc, G(φc))

∂σc
+
∂V (φc, G(φc))

∂G

dG(φc)
dσc

)∣∣∣∣
σc=σ0,πc=0

=
∂V (φc, G(φc))

∂σc

∣∣∣∣
σc=σ0,πc=0

= 0 (35)

which gives

σ0

[
m2+

2λ
3N
σ0+

2λ
N
P [α+β] +

2λ
3
N − 1
N

P [α]
]

= 0 (36)

This equation reduces to the very simple form when the
SD-equations are used again.

σ2
0

[
α+ β − 4λ

3N
σ2

0

]
= 0 . (37)

Here we need some case for the meson masses. The
question is whetherMσ andMπ, which are the parameters
that appear in the SD-equation, can be identified as the
physical masses of the sigma mesons and pions. In fact, it
is more appropriate to define the masses by the curvatures
of the effective potential around its minimum, namely,

m2
σ ≡ d2V

dσ2
c

∣∣∣∣
σc=σ0,πc=0

, (38)

m2
π ≡ d2V

dπ2
c

∣∣∣∣
σc=σ0,πc=0

, (39)

rather than Mσ and Mπ. The quantities Mσ and Mπ are
merely regarded as variational parameters which are de-
termined from the SD-equation. In fact if higher-order
loop corrections are taken into account in Γ2 in the CJT
action, the solutions of the SD-equation, Mσ and Mπ, be-
come momentum-dependent and then cannot be simply
identified with the physical meson masses. Of course, the
masses defined by eqs. (38) and (39) are also approximate
values unless all the loop contributions are taken into ac-
count. But we see that the NG theorem is always satisfied
because the O(N) symmetry is satisfied at any order of
expansion. This way of defining the masses in the effective
potential formalism is also seen in ref. [7,18] 1. The differ-
ences between two definitions come from the truncation of
the loop expansion of the CJT action. Since the physical
mass is defined by the pole of the two-point function, if one

1 In [18], the dressed propagator ansatz (26) are used. In this
case even if one defines the meson masses by the second deriva-
tives of the effective potential, the NG theorem is violated in
the CJT formalism because of the violation of the O(N) sym-
metry in the effective potential. Final results are correct in that
paper, but a careful examination is needed in this approach as
discussed previously.

can calculate the effective potential up to all-order, both
definitions might give the same mass in the massless pion
sector. Our definition of the mass is based on the approx-
imation that respects the O(N) symmetry and therefore
the NG-theorem is satisfied at each loop diagram of Γ2 in
the CJT action.

We evaluate the meson masses according to the defi-
nitions (38) and (39). The results are

m2
σ = 2σ2

0

(
d(α+ β)
d(φ2

c)

∣∣∣∣
σc=σ0,πc=0

− 4λ
3N

)
, (40)

m2
π = 0 , (41)

in the broken symmetry phase. The pion mass vanishes as
expected. The derivative term in the sigma-meson mass is
transformed into

d(α+ β)
d(φ2

c)
=

(
18λN + 8λ2(N + 2)P2[α]

)
× (

9N2 + 6λN(N + 1)P2[α] + 18λNP2[α+ β]

+ 8(N + 2)λ2P2[α]P2[α+ β]
)−1

(42)

with

P2[x] ≡
∑∫

T,k

1
(k2 + x)2

(43)

by the SD-equations.
We discuss the treatment of these equations in a phe-

nomenological application in sect. 5 together with numer-
ical calculation.

4 Regularization

Renormalization of the CJT effective action in the linear
sigma-model is discussed in ref. [12] in the past. In that
paper, divergent integrals are regularized with a cut-off
and the renormalized mass and coupling are defined in
order to absorb the divergent part. This renormalization
program was performed in the large-N limit [14], where
all the divergent terms are absorbed into the bare quanti-
ties. However, if one applies this to the present case, one
sees that not all the divergences can be removed away. Al-
though all the divergences can be absorbed by the renor-
malization in the symmetry restored phase, if we use it in
the broken phase, all the terms in the SD-equation and the
effective potential are expressed not only by the renormal-
ized quantities but bare quantities remain in several terms.
Essentially the same situation is encountered in the mean
field approach [7].

Under these circumstances, Amelino-Camelia makes
the following arguments. If we are interested in the possi-
bility of renormalization, we drop the λ term in the infinite
limit of the cut-off. We then get, however, Mσ = Mπ. He
also says that if one treats the model as the low-energy
effective model, the cut-off Λ should be a large finite value
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which is smaller than the Landau pole. He concludes that
Mπ vanishes at λ → 0 but remains finite for the finite
value of the cut-off.

We agree that the O(N) linear sigma-model in four
dimensions may be trivial if the full quantum effects are
included. Our analysis is, however, basically one-loop level
and therefore semi-classical. So we consider another way
of the renormalization which removes divergences order
by order both in the symmetry restored phase and broken
phase.

Recently a regularization scheme, which is similar to
the Pauli-Villars regularization, is used in the CJT ac-
tion [20]. We here use another regularization scheme based
on auxiliary field method with the dimensional regulariza-
tion. In the original CJT’s paper [8], it is reported that
the effective potential in the large-N limit in the CJT for-
malism is the same form obtained from the auxiliary field
method [14]. Since the solutions of the SD-equation, α and
β, are momentum independent here, we can regard them
as an auxiliary field. Then one can regularize the CJT ef-
fective potential with the auxiliary field method following
some literature [14,15].

Following the above argument, we first rewrite the
O(N) symmetric CJT effective potential (28) using the
SD-equations (31) and (32)

V (φc, α, β) =
1
2
(α+ β)φ2

c −
λ

3N
φ4

c

+
3N2

4λ(N + 2)
αm2 +

3N
4λ(N + 2)

βm2 − 3N
16λ(N + 2)

× {
(2N − 3)α2 + 6αβ + (N + 2)β2 + 2Nm4

}
+
1
2

∫
d4k

(2π)4
ln(k2+α+β)+

N−1
2

∫
d4k

(2π)4
ln(k2+α).(44)

Throughout this section, we ignore the temperature-
dependent terms, since they are separable and all finite.
This means that the loop integrals in the equations are
simply four-momentum integrals. We consider that the
extension to the system at finite temperature should be
carried out for the well-defined effective potential which
has no divergence after regularization. Once the regular-
ization is carried out at T = 0, it is straightforward to
extend it to the system at finite temperature since the
temperature dependent terms all converge in the UV limit
due to the Boltzmann factor.

We add four counter terms in order to cancel the di-
vergence, which is analogous to ref. [14,15],

Aα+Bβ + Cα2 +Dβ2 + Eαβ , (45)

where A,B,C,D and E are “renormalization” constants
to adjust the divergences and become

A = B = 0,

C = ND = 2NE =
N

64π2

(
2

4 − d − γE + ln(4π)
)
, (46)

if the MS scheme of dimensional regularization is used.
These correspond to the following “renormalization” con-

ditions:

dV
dα

∣∣∣∣
σ2
c=0,α=β=0

=
3N2m2

4λ(N + 2)
, (47)

dV
dβ

∣∣∣∣
σ2
c=0,α=β=0

=
3Nm2

4λ(N + 2)
, (48)

d2V

dα2

∣∣∣∣
σ2
c=0,α=0,β=µ2

= −3N(2N − 3)
8λ(N + 2)

, (49)

d2V

dβ2

∣∣∣∣
σ2
c=0,α=0,β=µ2

= −3N
8λ
, (50)

d2V

dαdβ

∣∣∣∣
σ2
c=0,α=0,β=µ2

= − 9N
4λ(N + 2)

, (51)

respectively. Therefore the regularized effective potential
is given by

V (φc, α, β) =
1
2
(α+ β)φ2

c −
λ

3N
φ4

c

+
3N2

4λ(N + 2)
αm2 +

3N
4λ(N + 2)

βm2 − 3N
16λ(N + 2)

×{
(2N−3)α2 + 6αβ + (N+2)β2 + 2Nm4

}
+

(α+β)2

64π2

×
(
ln
α+ β
µ2

− 3
2

)
+

(N − 1)α2

64π2

(
ln
α

µ2
− 3

2

)
. (52)

The regularized SD-equations are the same form as
eqs. (31), (32) except for the divergent terms:

α+ β = m2 +
2λ
N
φ2

c +
2λ
N

α+ β
16π2

(
ln
α+ β
µ2

− 1
)

+
2λ
3
N − 1
N

α

16π2

(
ln
α

µ2
− 1

)
, (53)

α = m2 +
2λ
3N
φ2

c +
2λ
3N

α+ β
16π2

(
ln
α+ β
µ2

− 1
)

+
2λ
3
N + 1
N

α

16π2

(
ln
α

µ2
− 1

)
. (54)

The gap equation for the sigma condensate and the formu-
lae of the meson masses are the same form as eqs. (37),
(40) and (41). They are all finite because α and β are
finite. Since α and β are not the auxiliary fields in the
CJT formalism, the above method is a kind of regular-
ization which is analogous to renormalization of auxiliary
fields. However, in the large-N limit, the CJT formalism is
equivalent to the auxiliary field method and above α and
β is identical to the corresponding auxiliary fields [14]. In
fact one can show that their results are identical to ours
in the large N limit, i.e., β vanishes and the “renormal-
ization” conditions (47) and (49) correspond to eqs. (2.5)
and (2.6) in ref. [15], respectively. Thus we think that it
is reasonable to apply it to the present CJT formalism.
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4.1 Summary of the formulation

We summarize the results of this section. First we formu-
late the O(N) linear sigma-model with the CJT effective
action. The Hartree-Fock approximation is used, which
corresponds to incorporating only the double bubble dia-
gram in the two-loop level in the CJT formalism. We adopt
the O(N) symmetric form of the propagator G, otherwise
the NG theorem is violated. On the renormalization, we
use the method of the auxiliary field. One can remove all
the divergence in the effective potential even in the bro-
ken phase in this method. The effective potential is then
eq. (52) plus the thermal effects:

V (φc, α, β) =
1
2
(α+ β)φ2

c −
λ

3N
φ4

c

+
3N2

4λ(N + 2)
αm2 +

3N
4λ(N + 2)

βm2 − 3N
16λ(N + 2)

× {
(2N − 3)α2 + 6αβ + (N + 2)β2 + 2Nm4

}
+

(α+ β)2

64π2

(
ln
α+ β
µ2

− 3
2

)
+

(N − 1)α2

64π2

×
(
ln
α

µ2
− 3

2

)
+

1
2
QT [α+ β] +

N − 1
2

QT [α] (55)

with

QT [x] =
∫

d3k

(2π)3
2
β

ln(1 − e−βωk),

ωk +
√

k2 + x (56)

α and β are determined by the SD-equations

α+ β = m2 +
2λ
N
φ2

c +
2λ
N
PT [α+ β]

+
2λ
3
N − 1
N

PT [α] +
2λ
N

α+ β
16π2

(
ln
α+ β
µ2

− 1
)

+
2λ
3
N − 1
N

α

16π2

(
ln
α

µ2
− 1

)
, (57)

α = m2 +
2λ
3N
φ2

c +
2λ
3N
PT [α+ β]

+
2λ
3
N + 1
N

PT [α] +
2λ
3N

α+ β
16π2

(
ln
α+ β
µ2

− 1
)

+
2λ
3
N + 1
N

α

16π2

(
ln
α

µ2
− 1

)
, (58)

with

PT [x] =
∫

d3k

(2π)3
nB(ωk)
ωk

. (59)

The sigma condensate is given by eq. (37) which is finite
since α+ β is finite in this case.

The meson masses are also given by eqs. (40) and (41).
The pion mass is of course massless in the broken symme-
try phase. In the equation of the sigma meson mass, P2[m]
factor is replaced by

P2[x] → P2,T [x]− 1
16π2

ln
x

µ2
, (60)

P2,T [x]=
β

2

∫
d3k

(2π)3
1
ω2

k

[(
1+

1
βωk

)
nB(ωk)+nB(ωk)2

]
(61)

in the MS scheme of the dimensional regularization.

5 An application to the low-energy mesons

In this and the following sections, we apply the CJT for-
malism introduced in sect. 3 to systems of low-energy
hadrons. We include both the thermal and quantum cor-
rections in numerical calculation.

5.1 Formulation of the explicitly chiral symmetry
breaking

First we formulate a system with a sigma-meson and pi-
ons. Since the real pions have masses because of the small
but non-zero u, d quark masses, we introduce a term which
explicitly breaks chiral symmetry in the Lagrangian:

L =
1
2
∂µφ

a∂µφ
a +

1
2
m2φ2 +

λ

6N
(φ2)2 − cσ , (62)

with φ1 = σ. Since the two-point function is obtained
from the second-derivative of the Lagrangian, this term
does not affect it and the SD-equations for α + β and α
are the same forms as eqs. (57) and (58). Thus the effective
potential is the same as eq. (55) except for the cσ term:

V (φc, α, β) =
1
2
(α+ β)φ2

c −
λ

3N
φ4

c

+
3N2

4λ(N + 2)
αm2 +

3N
4λ(N + 2)

βm2 − 3N
16λ(N + 2)

× {
(2N − 3)α2 + 6αβ + (N + 2)β2 + 2Nm4

}
+

1
2
QT [α+ β] +

N − 1
2

QT [α] +
(α+ β)2

64π2

×
(
ln
α+ β
µ2

− 3
2

)
+

(N − 1)α2

64π2

(
ln
α

µ2
− 3

2

)
. (63)

The gap equation for the sigma condensate in turn
becomes

σ2
0

[
(α+ β)(σ2

0)−
4λ
3N
σ2

0

]
= c . (64)

From this equation one sees that the pion mass does not
vanish even below the critical point

m2
π =

c

σ0
(65)

and the sigma-meson mass is given by

m2
σ = 2σ2

0

(
d(α+ β)
d(φ2

c)

∣∣∣∣
σc=σ0,πc=0

− 4λ
3N

)
+
c

σ0
, (66)

where the derivative term is the same form as eq. (42).
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5.2 Numerical results

Here we show some numerical results of the above equa-
tions. We first concentrate only on the thermal effects and
ignore the quantum corrections. This approximation is fre-
quently used in the literature when one is interested in the
thermal effects. We will include the quantum corrections
in the next subsection. Throughout this and the next sec-
tion, we set N = 4, i.e., the SU(2)L ×SU(2)R chiral sym-
metry which corresponds to the real world of one sigma
and three pions.

5.2.1 Thermal corrections

We use the values at zero temperature as initial conditions
of numerical calculation. Because we ignore the quantum
corrections at this stage, the solutions of the SD-equations
α + β and β are equal to mσ and mπ at T = 0 as in the
chiral limit. Initial parameters are determined from the
condition at T = 0:

c = fπm
2
π(T = 0) , (67)

λ =
3
f2

π

(m2
σ(T = 0) −m2

π(T = 0)) , (68)

m2 = −1
2
m2

σ(T = 0) +
3
2
m2

π(T = 0) , (69)

where fπ(= 93 MeV) is the pion decay constant at zero
temperature.

For the mass of σ, Particle Data Group gives the value
of 400–1200 MeV [21]. We take mσ = 600 MeV as typical
values. Qualitative properties change little if the mass of
the sigma meson is to be mσ = 1 GeV. m2 is negative
because the spontaneous symmetry breaking takes place.

These results are essentially the same as ref. [13] be-
cause we ignore the quantum corrections here, so we do
not give their results. In ref. [13], however, the author
identifies α+β and β with the sigma-meson mass and the
pion mass, respectively, so that he concludes that the NG
theorem is violated at finite temperature. As discussed be-
fore, we do not regard these values as the physical meson
masses and rather consider them simply as variational pa-
rameters. We calculate the sigma meson mass according
to eq. (66) instead.

When we evaluate the sigma meson mass in the chi-
ral limit in this approximation, however, we encounter a
difficulty due to the infrared singularity. As shown in sub-
sect. 3.2, there is a factor P2[x] in the equation of the
sigma meson mass eq. (66). Its temperature-dependent
part P2,T [x] has the form

P2,T [x] =
1

4π2

∫ ∞

0

dy
y2

y2 +
(

x
T

)2

×
[(

1 +
1√

y2 +
(

x
T

)2

) 1

e

√
y2+( x

T )2 − 1

+
1(

e

√
y2+( x

T )2 − 1
)2

]
. (70)

We naively suppose that this temperature-dependent part
vanishes at T → 0. This is indeed so for x �= 0. How-
ever, this factor gives a non-zero contribution if x ap-
proaches to zero for T → 0 keeping x/T finite. This
phenomenon actually occurs in the strict chiral limit if
we neglect quantum corrections, because one of the solu-
tions of the SD-equation, α, vanishes at T = 0. The fact
that α/T approaches to a non-zero value at T = 0 can
be confirmed by numerical calculation. Thus the sigma-
meson mass mσ(T → 0) deviates from mσ(T = 0) = 600
MeV. We consider that this is because we have taken only
the temperature dependent part in P2[x]. In fact, in the
chiral limit, the temperature-independent part P2,Q[x] is
also infrared divergent at T = 0 and is to cancel the
infrared singularity in P2,T [x]. So it may not be possi-
ble to separate the temperature-dependent part and the
temperature-independent one in P2[x].

There are two possibilities to solve this problem. One
is to introduce the explicit chiral symmetry breaking term
−cσ, as seen above. This makes α finite at T = 0, corre-
sponding to the finite-mass pions. So if we take the pion
mass to be considerably large, e.g., mπ(T = 0) = 138
MeV, this problem apparently disappears. Another pos-
sibility, which we think is better, is to include quantum
corrections, which makes α finite even in the chiral limit.
The study along this line is given in the following subsec-
tion.

5.2.2 Thermal and quantum corrections

In this subsection, we include the quantum corrections fol-
lowing the regularization of the auxiliary field discussed in
sect. 4. We have then another parameter µ which is intro-
duced in the dimensional regularization and corresponds
to the renormalization scale which is the regularization
parameter in the present case. As µ is a free parameter,
we must choose a suitable value µ at which the sponta-
neous symmetry breaking actually occurs. All the other
parameters are determined at the chosen µ as reasonable
values. Before proceeding to finite temperature, we per-
form a simple estimation in our model.

In QCD, the following relation is well satisfied:

f2
πm

2
π = 2mq〈qq〉 , (71)

where q denotes the light u, d quarks. This relation is
called the Gell-Mann–Oakes-Renner(GMOR) relation and
is derived from the low-energy theorem of QCD. In the
chiral perturbation theory which is one of the low-energy
effective models of QCD, this relation is also satisfied to
the first order in the quark mass. This equation shows that
the pion mass square is proportional to the quark mass.
The deviation from it corresponds to higher-order effects
of the chiral perturbation theory. Since the chiral pertur-
bation theory is a perturbation expansion in both external
momenta of the NG bosons and the current quark masses,
if this relation is satisfied up to the relatively large quark
mass, it means that the chiral perturbation theory is valid
up to this momentum scale. We recently investigated the
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Fig. 3. The solutions of SD-equations for mσ(T = 0) = 600
MeV and µ = 320 MeV. The solid line is α+β and the dashed
one is α.
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Fig. 4. mσ for mσ(T = 0) = 600 MeV and µ = 320 MeV.

behavior of the GMOR relation by constructing the pion
as a relativistic bound state of quark and antiquark pair
using the Bethe-Salpeter equation [22]. We showed that
the GMOR relation is quite well satisfied at least up to
the strange quark mass (∼ 150 MeV) region.

In our linear sigma-model the relation corresponding
to GMOR relation is

fπm
2
π = c . (72)

We can evaluate the c-dependence of m2
π in the fol-

lowing way. First we determine the values of c and other
parameters atmπ = 138 MeV. Then by changing the value
of c with the other parameters fixed, we calculate α + β
and α, and the meson masses. The obtained results are
shown in fig. 6. We have confirmed that these results are
almost independent of the parameter, µ. These three val-
ues show almost linear dependence on c. In the chiral limit
(c = 0), the sigma condensate which corresponds to the
pion decay constant is about 87 MeV. This is very similar

0 50 100

–200
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400

[MeV 4]
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V

Fig. 5. Effective potential for mσ(T = 0) = 600 MeV and
µ = 320 MeV. Solid lines denote the case of T =198 MeV, 194
MeV, · · · ,174 MeV from top to bottom.
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Fig. 6. σ2
0 , m2

σ and m2
π for µ = 320 MeV.

to the one obtained in the chiral perturbation theory [23]
which gives 88 MeV. The sigma-meson is about 490 MeV
(we have fixed mσ = 600 MeV at mπ = 138 MeV) and the
pion mass of course vanishes in the chiral limit. Thus we
see that the linear sigma-model reproduces some results
well obtained from the chiral perturbation theory.

Now we proceed to finite temperature. Once the quan-
tum corrections are included, α + β and α do not agree
with the sigma and pion masses even at T = 0. We need to
determine them by solving the SD-equations and the gap
equation for the sigma condensate. We show the results of
the initial parameters obtained in this way in tables 1–3.
The value T ′

c is the point where the σ0 curve crosses the
temperature axis. We see that for smaller µ, α can be
negative so that the effective potential becomes complex
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Table 1. Initial Parameters for T = 0

mπ = 0 MeV
mσ [MeV] µ [MeV] λ α [MeV] α+ β [MeV] m2 [MeV2] T ′

c [MeV]

600 320 90.2 41.5 510 −122375 128
600 400 102 119 542 −94208 105
600 500 122 183 594 −47679 68.4
600 567 139 223 632 0 0
600 TREE 125 0 600 −180000 132

1000 410 156 29 670 −218034 130
1000 500 177 156 715 −128224 93.2
1000 599 208 239 774 0 0
1000 TREE 347 0 1000 −500000 132

Table 2. Initial Parameters for T = 0 (various values of µ)

mπ = 138 MeV
mσ [MeV] µ [MeV] λ α [MeV] α+ β [MeV] m2 [MeV2]

600 220 66.9 55.9 460 −96324
600 300 77.8 114 493 −83362
600 400 94.7 165 540 −59939
600 520 119 223 603 −5633
600 TREE 118 138 600 −151434
1000 380 142 54.8 655 −197043
1000 400 146 87.5 664 −180329
1000 500 172 184 718 −95776
1000 580 196 245 765 −106
1000 TREE 340 138 1000 −471434

unphysical. For larger µ, m2 becomes positive so that the
spontaneous symmetry breaking does not occur. As a re-
sult a proper range of µ is naturally determined as is given
in the table. Because the parameter µ is free within this
range, we show as an example a result for µ = 320 MeV
in the case of mσ(T = 0) = 600 MeV.

We show the temperature dependence of the solutions
of the SD-equations, the physical meson masses and the
effective potential in the chiral limit in figs. 3-5. Tempera-
ture dependence of the sigma condensate is also shown in
fig. 9. The effective potential shows the signature of the
first-order phase transition, whose behavior is similar to
the case without quantum corrections.

We see also from the solutions of the SD-equations
and the sigma condensate that the equations have two
solutions at some temperature. This is a typical feature of
the first-order phase transition, that is, the upper solution
corresponds to the (local) minimum of the potential and
the lower to the maximum of the potential.

Table 3. Initial Parameters for T = 0 (various pion masses)

mσ = 600 MeV, µ = 320 MeV
mπ [MeV] λ α [MeV] α+ β [MeV] m2 [MeV2]

0 90.2 41.5 510 −122375
20 89.8 44.7 509 −121078
60 87.8 64.8 507 −112237
100 84.6 93.5 504 −97658
138 80.9 125 502 −79760

As the temperature increases from zero, the sigma con-
densate decreases, jumps to zero at Tc and remains zero
above Tc. Likewise, in the figures α+β (α) changes along
the solid (dashed) line, jumps to the lower solid line at Tc

and increases along this line.
If the deconfinement transition takes place at the same

critical temperature as the chiral phase transition, there
are free quarks and gluons for T > Tc. But recent lat-
tice simulations suggest that there are some correlations
of quarks and gluons above Tc [24]. An instanton liquid
model also favors this result [25]. This may imply there
exist hadronic excitations even above Tc.

The fact that the phase transition is the first or-
der agrees with other mean-field approaches [5–7]. It is,
however, generally believed mainly from the analysis of
the renormalization group equation that the actual phase
transition of the O(4) linear sigma-model should be of the
second order. We comment on this problem in the follow-
ing section.

The critical temperature is about 184 MeV for µ = 320
MeV and about 178 MeV for µ = 500 MeV. For the case
of mσ(T = 0) = 1 GeV, it is about 220 MeV for µ =
400 MeV and about 230 MeV for µ = 580 MeV. So the
parameter µ little affects the critical temperature. These
values are reasonable since other approaches in the linear
sigma model predict similar values.

We note that there is no peculiar behavior in the curves
of the sigma-meson mass, shown in fig. 4. This is because
α does not vanish even at T = 0 due to the quantum
corrections, shown in fig. 3. On the other hand, the pions
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Fig. 7. The SD-solutions mσ(T = 0) = 600 MeV, mπ(T =
0) = 138 MeV and µ = 320 MeV. The solid line is α + β and
the dashed one is α.

0 100 200 300 400
0

200

400

600

[MeV]

T [MeV]

mσ,mπ

Fig. 8. mσ for mσ(T = 0) = 600 MeV, mπ(T = 0) = 138
MeV and µ = 320 MeV.

remain massless below the critical temperature even in
this case.

Finally we show the cases with the explicitly chi-
ral symmetry breaking, i.e. mπ(T = 0) = 138 MeV in
figs. 7-9.

6 Comments on effects of other loops

We have so far calculated the physical quantities in the
Hartree approximation. This means that the solutions
of the SD-equations for the propagator, α and β, are
momentum-independent. In the superdaisy diagrams, this
assumption is quite natural because no external momen-
tum enters into loops. In fact many authors use this ap-
proximation within the formalism of the superdaisy dia-
grams in the mean-field approach [5–7].

However, note that near the critical temperature there
is no reason to believe that only the superdaisy diagrams

0 100 200 300 400
0

50

100
[MeV]

T [MeV]

σ0

Fig. 9. Sigma condensates σ0 for mσ(T = 0) = 600 MeV,
µ = 320 MeV and mπ(T = 0) = 0, 20, 60, 100, 138 MeV from
left to right.

Fig. 10. The loop diagram contributing to the two-point Green
function which comes from the setting-sun–type diagram.

are dominant. Within the framework of the Hartree ap-
proximation, the first-order phase transition takes place
as in our case. (If we take the large-N limit in the CJT
approach, the result is the second-order, see ref. [13].) But
the analyses of the renormalization group equations etc.
suggest that the phase transition of the O(4) linear sigma-
model is of the second order [26,27]. Arnold and Espinosa
pointed out that other loop diagrams than the superdaisy
diagrams are important near the critical temperature [28].
So the result for the order of the transition cannot be
trusted in the calculation with the superdaisy diagrams
only.

The next leading loop diagram contributing to the ef-
fective potential is a setting-sun–type diagram. This di-
agram contributes to the two-point Green function as in
fig. 10.

It is obvious that the external momentum enters into
the loop and therefore the self-energy depends on the ex-
ternal momentum. In our CJT formalism, this means that
α and β become momentum-dependent. Furthermore, we
may have to take into account the wave function renor-
malization by this diagram. As far as we know, there is
no calculation in which this diagram is incorporated con-
sistently. Here we briefly estimate the contribution of this
setting-sun diagram to the order of the phase transition
in the CJT approach by some approximation. The term
of the effective potential corresponding to the setting-sun
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diagram is given by

− 4λ2

9N2
φa

cφ
c
c

∑∫
T,p

∑∫
T,q

{2Gad(p)Gbd(q)Gbc(−p− q)

+Gac(p)Gbd(q)Gbd(−p− q)} . (73)

Hereafter we consider a simple case with N = 1, since
we are now interested in the phase transition rather than
the hadron phenomenology. The CJT effective potential
is now given by

V (φc, G) =
1
2
m2φ2

c +
λ

24
φ4

c +
1
2
∑∫

T,k

lnG−1(k)

+
1
2
∑∫

T,k

D−1(k)G(k) +
λ

8

(∑∫
T,k

G(k)
)2

−λ
2

12
φ2

c

∑∫
T,p

∑∫
T,q

G(p)G(q)G(−p− q) (74)

with

D−1(k) = k2 +m2 +
λ

2
φ2

c . (75)

From the extremal condition, we obtain the SD-equation
for G:

G−1(p) = D−1(p) +
λ

2
∑∫

T,k

G(k)

−λ
2

2
φ2

c

∑∫
T,k

G(k)G(−p− k) (76)

Since the integral of the last term in eq. (76) depends on
the external momentum, it is natural to put the form of
G as

G(p) =
A(p)

p2 +M(p)2
. (77)

Here we take a very simple form in which any external
momentum dependence in the parameters are neglected,
i.e., A = 1 and M(p) =M . It can be calculated relatively
easily in the CJT formalism by this procedure. Though
this is rather strong approximation and nothing but a kind
of the superdaisy approximation, we see that the order of
the phase transition can change in some case.

We have calculated two cases that neglect quantum
corrections. One corresponds to the small λ, λ ∼ O(1),
and the other the large one, λ ∼ O(100). The latter is the
order used in the low-energy effective model of the π, σ
mesons. The results are as follows. Without the setting-
sun diagram, if the coupling constant λ is small, the weak
first-order phase transition occurs. We see that in this
case the order becomes second by including the setting-
sun (fig. 11), while in the strong-coupling region the order
does not change. So the contribution of the setting-sun
diagram in this approximation changes the order of the
phase transition from the first to the second if the origi-
nal first order is rather weak.

0 100 200 300 [MeV]φc

V (a.u.)

Fig. 11. Effective potentials near the critical temperature
without (above) and with (below) the setting-sun(λ = 1). The
values of the potential are in arbitrary units.

Chiku and Hatsuda calculated this diagram in the op-
timized perturbation theory [10]. They include the re-
summed mass parameter in the Lagrangian from the be-
ginning and renormalize it first assuming that the mass
parameter is a momentum-independent constant factor
though the inclusion of this diagram makes the mass pa-
rameter momentum-dependent. We think that this cor-
responds to our approximation used above. Nevertheless,
they pointed out that if this diagram is included in their
formalism, the order of the phase transition may change
from the first to the second.

Nachbagauer also calculated this diagram in the one-
component φ4 theory in the CJT action [29]. He calculated
the self-energy in a certain approximation in order to get
rid of the UV-divergence and evaluated the Green func-
tion in the Padé approximation. He also pointed out that
this diagram is important near the critical temperature,
although he does not evaluate the order of the transition.

In conclusion, it seems to be necessary to include the
effects of the higher-order diagrams, if we discuss the be-
havior near the critical temperature. Further investigation
is needed in the future.

7 Summary and conclusion

We have studied the O(N) symmetric linear sigma-model
at finite temperature in the Hartree approximation using
the CJT effective potential. This model has been consid-
ered as the low-energy effective model of the low-energy
mesons, i.e., the sigma-meson and the pions. It has so far
been understood that the NG theorem is not satisfied, or
the pions are massive at finite temperature in the CJT for-
malism unless the large-N limit is taken. We showed that
this is caused by an improper derivation of the effective
potential, such as an O(N)-violating form for the solution
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of the SD-equation for the propagator. If the O(N) sym-
metric form is chosen and one defines the meson masses
as the second derivatives of the effective potential, the NG
theorem is always satisfied even at finite values of N . This
is also satisfied at any order of the loop expansion of Γ2,
which is the contribution of the two-particle irreducible
vacuum graphs.

We have also used a regularization of the CJT effective
potential from the analogy to renormalization of the aux-
iliary field. This works apparently both in the symmetry
broken and restored phases, while the conventional renor-
malization works only in the symmetry restored phase.

When one is interested in effects of the thermal con-
tributions at finite temperature, quantum corrections are
often neglected. The classical equation of motions are sat-
isfied at T = 0 in this case and the thermal effects are
added as temperature increases. We have solved the gap
equation for the sigma condensate, the SD-equations and
the meson masses numerically in this approximation. As a
result the first-order phase transition occurs, because this
corresponds to the mean-field approach. Related to this
approximation, we encounter a problem in calculating the
sigma-meson mass in the chiral limit because of the in-
frared singularity. This difficulty is removed if one includes
the quantum corrections because the solutions of the SD-
equations which cause the infrared singularity remain fi-
nite in the chiral limit at T = 0. So consistent treatments
including the quantum corrections which is discussed in
sect. 4 are needed to obtain more realistic results. In sub-
sect. 5.2.2, based on the above notion, we incorporated the
quantum corrections. As a result the infrared singularity
disappeared and the behavior apparently became better
for both the chiral limit and the finite pion mass.

The resulting phase transition in the O(4) linear
sigma-model is of the first order, which is consistent with
other mean-field approaches. However the second-order
phase transition is reported in this model in the renormal-
ization group equation analyses. In fact near the critical
temperature other loop contributions may become signif-
icant and we showed the simple estimation of the effects
of the setting-sun diagram in the CJT approach. As a re-
sult, the order of the phase transition can change with this
inclusion. Therefore further investigation is needed if one
studies the order of the phase transition more rigorously.

Appendix A. The O(N) linear sigma-model
with auxiliary fields

We applied the technique of renormalization of auxiliary
fields for the CJT approach in the main text. In this ap-
pendix we analyze the O(N) linear sigma-model at finite
temperature by using auxiliary fields in order to show a
similarity with the CJT approach. We also point out that
if we analyze the O(N) linear sigma-model at finite tem-
perature with the auxiliary fields from the beginning, some
difficulties associated with the NG theorem arise again.
Such an approach was carried out in ref. [30], where one
auxiliary field was introduced. However, this causes the

violation of the NG theorem unless some 1-loop terms
are added in the sigma- and pion self-energy. We require
a more general form of auxiliary fields which do not the
O(N) symmetry in order to relate it to the CJT approach.

For the original Lagrangian, after shifting the fields
φa → φa + φa

c , we introduce an auxiliary field with an
N ×N symmetric matrix:

exp
{
−

∫
d4x

λ0

6N
(φ2)2

}

=
∫

Dχ exp
{
−

∫
d4x

[
λ0

6N
(φ2)2 − 3N

8λ0(N + 8)

×
(
χab − 2λ0

3N
φ2δab − 4λ0

3N
φaφb

)2
]}

. (A.1)

We take the saddle point approximation for χab, i.e.,
χab ≈ χab

c , and then the effective potential at the 1-loop
order is obtained:

V (φc, χc) =
m2

2
φ2

c +
λ

6N
(φ2

c)
2 − 3N

8λ(N + 8)
χ2

c

+
1
2
∑∫

T,k

ln det
{(
k2 +m2 +

2λ
3N
φ2

c +
χcc

c

N + 8

)
δab

+
4λ
3N
φa

cφ
b
c +

2
N + 8

χab
c

}
. (A.2)

From the extremal conditions for χab
c and φa

c , we obtain
the following equations:

M2
1 = m2 +

2λ
3N

+
2λ
3

1
N + 8

×∑∫
T,k

{
N + 3
k2 +M2

1

+
(N + 4)/N
k2 +M2

2

}
, (A.3)

M2
2 = m2 +

2λ
N

+
2λ
3

1
N

×∑∫
T,k

{
(N + 4)(N − 1)/(N + 8)

k2 +M2
1

+
1

k2 +M2
2

}
, (A.4)

φ2
c

{
m2 +

2λ
3N
φ2

c +
2λ
N

×∑∫
T,k

1
k2+M2

2

+
2λ(N−1)

3N
∑∫

T,k

1
k2+M2

1

}
= 0 , (A.5)

where we defined α and β by χab
c = αδab +β φa

c φb
c

φ2
c

without
loss of generality of χab

c and put

M2
1 = m2 +

2λ
3N
φ2

c +
(N + 2)α+ β

N + 8
, (A.6)

M2
2 = m2 +

2λ
N
φ2

c +
(N + 2)α+ 3β

N + 8
. (A.7)

Equations (A.3), (A.4) and (A.5) are similar to eqs. (31),
(32) and (37) in the CJT approach, respectively. In fact



Y. Nemoto et al.: Effective potential of the O(N) linear sigma-model at finite temperature 259

the renormalized form of the effective potential (A.2) can
be obtained by requiring renormalization conditions for
M1 and M2 at zero temperature, which means the renor-
malization of the auxiliary fields. Our regularization in the
CJT approach is based on this idea.

A difficulty occurs, however, when we consider the case
of finite temperature. Our numerical calculation shows
that the eqs. (25), (A.4) and (A.5) do not have any physi-
cal solutions at finite temperature in contrast to the CJT
approach. This means that the summation of the super-
daisy diagrams does not work well and we may require
some additional terms to recover it as in ref. [30]. The
CJT approach, on the other hand, does not have such a
problem, though the forms of the equations are similar. We
think that the CJT case corresponds to special auxiliary
fields other than those of this section, but the relations
between them remain as the future problem.
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